
EjsS*Manual November 21, 2014

Chapter Three

Exploring the Javascript flavor of Easy Java(script)

Simulations

Change is the law of life. And those who look only to the past
or present are certain to miss the future. John F. Kennedy

To provide a perspective of the modeling process, in this chapter we
first load, inspect, and run an existing simple harmonic oscillator simulation.
We then modify the simulation to show how EjsS engages the user in the
modeling process and greatly reduces the amount of programming that is
required. This chapter uses Javascript as the programming language for the
modeling and is a twin chapter for Chapter 2 (where Java is used).

3.1 INSPECTING THE SIMULATION

As mentioned in Chapter 1, Easy Java(script) Simulations provides three
workpanels for modeling. The first panel, Description, allows us to create
and edit multimedia HTML-based narrative that describes the model. The
second work panel, Model, is dedicated to the modeling process. We use
this panel to create variables that describe the model, to initialize these
variables, and to write algorithms that describe how this model changes in
time. The third workpanel, HtmlView, is dedicated to the task of building
the graphical user interface, which allows users to control the simulation and
to display its output.

To understand how the Description, Model, and HtmlView workpanels
work together, we inspect and run an already existing simulation. Screen
shots are no substitute for a live demonstration, and you are encouraged to
follow along on your computer as you read.

Click on the Open icon on the EjsS taskbar. A file dialog similar to
that in Figure 3.1 appears showing the contents of your workspace’s source
directory. Go to the JavascriptExamples directory, where you will find



EjsS*Manual November 21, 2014

34 CHAPTER 3

Figure 3.1: The open file dialog lets you browse your hard disk and load an existing
simulation. The appearance of the dialog (shown here using two different look and
feels) may vary, depending on your operating system and the selected look and feel.

a file called MassAndSpring.ejss. Select this file and click on the Open
button of the file dialog.

Now, things come to life! EjsS reads the MassAndSpring.ejss doc-
ument which populates the workpanels and a new “EjsS Emulator” appears
in your display as shown in Figure 3.2. A quick warning. You can drag
objects or click buttons within this mock-up window but the model will not
exhibit its full behavior. You need to run the simulation for that.

Figure 3.2: EjsS mock-up windows of the MassAndSpring simulation. The title
bar and the red border show that this an HTML Emulator window within EjsS and
that the program is not running.

Impatient or precocious readers may be tempted to click on the green run
icon on the taskbar to execute our example before proceeding with this
tutorial. Readers who do so will no longer be interacting with EjsS but with
a compiled and running Javascript program on an HTML page. Exit the
running program by closing the Mass and Spring window or by right clicking
on the (now) red-squared stop icon on EjsS ’ taskbar before proceeding.



EjsS*Manual November 21, 2014

EXPLORING THE JAVASCRIPT FLAVOR OF Easy Java(script) Simulations 35

3.1.1 The Description workpanel

Select the Description workpanel by clicking on the corresponding radio
button at the top of EjsS, and you will see two pages of narrative for this
simulation. The first page, shown in Figure 3.3, contains a short discussion
of the mass and spring model. Click on the Activities tab to view the second
page of narrative.

Figure 3.3: The description pages for the mass and spring simulation. Click on a
tab to display the page. Right-click on a tab to edit the page.

A Description is HTML or XHTML multimedia text that provides
information and instructions about the simulation. HTML stands for Hy-
perText Markup Language and is the most commonly used protocol for for-
matting and displaying documents on the Web. The X in XHTML stands
for eXtensible. XHTML is basically HTML expressed as valid XML or, in
simpler words, perfectly formatted HTML.

EjsS provides a simple HTML editor that lets you create and modify
pages within EjsS. You can also import HTML or (preferably) XHTML
pages into EjsS by right clicking on a tab in the Description workpanel.
(See Section 3.4.3.) Description pages are an essential part of the modeling
process and these pages are included with the compiled model when the
model is exported for distribution.

3.1.2 The Model workpanel

The Model workpanel is where the model is defined so that it can be con-
verted into a program by EjsS. In this simulation, we study the motion of a
particle of mass m attached to one end of a massless spring of equilibrium
length L. The spring is fixed to the wall at its other end and is restricted
to move in the horizontal direction. Although the oscillating mass has a
well known analytic solution, it is useful to start with a simple harmonic
oscillator model so that our output can be compared with an exact analytic



EjsS*Manual November 21, 2014

36 CHAPTER 3

result.

Our model assumes small oscillations so that the spring responds to
a given (horizontal) displacement δx from its equilibrium length L with a
force given by Hooke’s law, Fx = −k δx, where k is the elastic constant of
the spring, which depends on its physical characteristics. We use Newton’s
second law to obtain a second-order differential equation for the position of
the particle:

d2 x

dt2
= − k

m
(x− L). (3.1.1)

Notice that we use a system of coordinates with its x-axis along the spring
and with its origin at the spring’s fixed end. The particle is located at x
and its displacement from equilibrium δx = x− L is zero when x = L. We
solve this system numerically to study how the state evolves in time.

Let’s examine how we implement the mass and spring model by se-
lecting the Model radio button and examining each of its six panels.

3.1.2.1 Declaration of variables

Figure 3.4: The Model workpanel contains six subpanels. The subpanel for the
definition of mass and spring dynamical variables is displayed. Other tabs in this
subpanel define additional variables, such as the natural length of the spring L and
the energy E.

When implementing a model, a good first step is to identify, define,
and initialize the variables that describe the system. The term variable is
very general and refers to anything that can be given a name, including a
physical constant and a graph. Figure 3.4 shows an EjsS variable table.
Each row defines a variable of the model by specifying the name of the
variable, its type, its dimension, and its initial value.

Variables in computer programs can be of several types depending



EjsS*Manual November 21, 2014

EXPLORING THE JAVASCRIPT FLAVOR OF Easy Java(script) Simulations 37

on the data they hold. The most frequently used types are boolean for
true/false values, int for integers, double for high-precision (≈ 16 significant
digits) numbers, and String for text. We will use all these variable types in
this document, but the mass and spring model uses only variables of type
double and boolean.

If you have already learnt a bit of Javascript, you will probably know that
Javascript has actually no types for variables. All variables are declared with
a var keyword. This means that, in principle, Javascript makes no difference
among integers, doubles, Strings, etc. . . But it does! For instance, you should
not use a double variable as index for an array. For this reason, and also
because it helps clarify the use of variables in your model (what values they
can have and where you can or cannot use them), we ask you to assign a
type to each variable in your model.

Variables can be used as parameters, state variables, or inputs and
outputs of the model. The tables in Figure 3.4 define the variables used
within our model. We have declared a variable for the x-position of the
particle, x, for its velocity in the x-direction, vx, for the time, t, and for the
increment of time at each simulation step, dt. We define some variables,
in this and other tabs, that do not appear in Equation(3.1.1). The reason
for auxiliary variables, such as vx or the kinetic, potential, and total ener-
gies, will be made clear in what follows. The bottom part of the variables
panel contains a comment field that provide a description of the role of each
variable in the model. Clicking on a variable displays the corresponding
comment.

3.1.2.2 Initialization of the model

Correctly setting initial conditions is important when implementing a model
because the model must start in a physically realizable state. Our model is
relatively simple, and we initialize it by entering values (or simple Javascript
expressions such as 0.5*m*vx*vx) in the Initial value column of the table of
variables. EjsS uses these values when it initializes the simulation.

Advanced models may require an initialization algorithm. For example, a
molecular dynamics model may set particle velocities for an ensemble of
particles. The Initialization panel allows us to define one or more pages
of Javascript code that perform the required computation. EjsS converts
this code into a Javascript function and calls this method at start-up and
whenever the simulation is reset. The mass and spring Initialization panel
is not shown here because it is empty. See Subsection 3.1.2.4 for an example
of how Javascript code appears in EjsS.



EjsS*Manual November 21, 2014

38 CHAPTER 3

3.1.2.3 The evolution of the model

The Evolution panel allows us to write the Javascript code that determines
how the mass and spring system evolves in time and we will use this option
frequently for models not based on ordinary differential equations (ODEs).
There is, however, a second option that allows us to enter ordinary differ-
ential equations, such as (3.1.1), without programming. EjsS provides a
dedicated editor that lets us specify differential equations in a format that
resembles mathematical notation and automatically generates the correct
Javascript code.

Let’s see how the differential equation editor works for the mass and
spring model. Because ODE algorithms solve systems of first-order ordinary
differential equations, a higher-order equation, such as (3.1.1), must be re-
cast into a first-order system. We can do so by treating the velocity as an
independent variable which obeys its own equation:

d x

dt
= vx (3.1.2)

d vx
dt

= − k

m
(x− L). (3.1.3)

The need for an additional differential equation explains why we declared
the vx variable in our table of variables.

Clicking on the Evolution panel displays the ODE editor shown in
Figure 3.5. Notice that the ODE editor displays (3.1.2) and (3.1.3) (using

Figure 3.5: The ODE evolution panel showing the mass and spring differential
equation and the numerical algorithm.

the * character to denote multiplication). Fields near the top of the editor
specify the independent variable t and the variable increment dt. Numerical
algorithms approximate the exact ODE solution by advancing the state in
discrete steps and the increment determines this step size. The Prelim code



EjsS*Manual November 21, 2014

EXPLORING THE JAVASCRIPT FLAVOR OF Easy Java(script) Simulations 39

button at the top-right of the editor allows us to enter preliminary code,
to perform computations prior to evaluating the equations (a circumstance
required in more complex situations than the one we treat in this example).
A dropdown menu at the bottom of the editor lets us select the ODE solver
(numerical algorithm) that advances the solution from the current value of
time, t, to the next value, t + dt. The tolerance field (Tol) is greyed out
and empty because Runge–Kutta 4 is a fixed-step method that requires no
tolerance settings. The advanced button displays a dialog which allows us
to fine-tune the execution of this solver, though default values are usually
appropriated. Finally, the events field at the bottom of the panel tells us
that we have not defined any events for this differential equation. Examples
with preliminary code and events can be found further on in this document.
The different solver algorithms and its parameters are discussed in the EjsS
help.

The left-hand side of the evolution workpanel includes fields that de-
termine how smoothly and how fast the simulation runs. The frames per
second (FPS) option, which can be selected by using either a slider or an
input field, specifies how many times per second we want our simulation to
repaint the screen. The steps per display (SPD) input field specifies how
many times we want to advance (step) the model before repainting. The
current value of 20 frames per second produces a smooth animation that,
together with the prescribed value of one step per display and 0.05 for dt,
results in a simulation which runs at (approximately) real time. We will
almost always use the default setting of one step per display. However,
there are situations where the model’s graphical output consumes a signifi-
cant amount of processing power and where we want to speed the numerical
computations. In this case we can increase the value of the steps per display
parameter so that the model is advanced multiple times before the visualiza-
tion is redrawn. The Autoplay check box indicates whether the simulation
should start when the program begins. This box is unchecked so that we
can change the initial conditions before starting the evolution.

The evolution workpanel handles the technical aspects of the mass
and spring ODE model without programming. The simulation advances the
state of the system by numerically solving the model’s differential equations
using the midpoint algorithm. The algorithm steps from the current state
at time t to a new state at a new time t + dt before the visualization is
redrawn. The simulation repeats this evolution step 20 times per second on
computers or devices with modest processing power. The simulation may
run slower and not as smoothly on computers or devices with insufficient
processing power or if the computer is otherwise engaged, but it should not
fail.



EjsS*Manual November 21, 2014

40 CHAPTER 3

Although the mass and spring model can be solved with a simple ODE algo-
rithm, our numerical methods library contains very sophisticated algorithms
and EjsS can apply these algorithms to large systems of vector differential
equations with or without discontinuous events.

3.1.2.4 Relations among variables

Not all variables within a model are computed using an algorithm on the
Evolution workpanel. Variables can also be computed after the evolution has
been applied. We refer to variables that are computed using the evolution
algorithm as state variables or dynamical variables, and we refer to variables
that depend on these variables as auxiliary or output variables. In the mass
and spring model the kinetic, potential, and total energies of the system are
output variables because they are computed from state variables.

T =
1

2
mvx

2, (3.1.4)

V =
1

2
k(x− L)2, (3.1.5)

E = T + V. (3.1.6)

We say that there exists fixed relations among the model’s variables.

The Fixed relations panel shown in Figure 3.6 is used to write relations
among variables. Notice how easy it is to convert (3.1.4) through (3.1.6) into
Javascript syntax. Be sure to use the multiplication character * and to place
a semicolon at the end of each Javascript statement.

Figure 3.6: Fixed relations for the mass and spring model.

Here goes an important remark. You may wonder why we do not write
fixed relation expressions by adding a second code page after the ODE page
in the Evolution panel. After all, evolution pages execute sequentially and
a second evolution page would correctly update the output variables after



EjsS*Manual November 21, 2014

EXPLORING THE JAVASCRIPT FLAVOR OF Easy Java(script) Simulations 41

every step. The reason that the Evolution panel should not be used is that
relations must always hold and there are other ways, such as mouse actions,
to affect state variables. For example, dragging the mass changes the x
variable and this change affects the energy. EjsS automatically evaluates
the relations after initialization, after every evolution step, and whenever
there is any user interaction with the simulation’s interface. For this reason,
it is important that fixed relations among variables be written in the Fixed
relations workpanel.

3.1.2.5 Custom pages

There is a fifth panel in the Model workpanel labeled Custom. This panel
can be used to define Javascript functions that can be used throughout the
model. This panel is empty because our model currently doesn’t require
additional methods, but we will make use of this panel when we modify
our mass and spring example in Section 3.4. A custom method is not used
unless it is explicitly invoked from another workpanel.

3.1.2.6 Model elements

The final, sixth panel in the Model workpanel is labeled Elements and pro-
vides access to third-party Javascript libraries in the form of drag and drop
icons. You add these libraries to your program by dragging the correspond-
ing icon to the list of model elements to use for this model. This creates
Javascript objects you can then use in your model code. This panel is also
empty for this model because our mass and spring doesn’t require additional
Javascript libraries.

3.1.3 The HtmlView workpanel

The third Easy Java(script) Simulations workpanel is the HtmlView. This
workpanel allows us to create a graphical HTML-based interface that in-
cludes visualization, user interaction, and program control with minimum
programming. Figure 3.2 shows the HTML-based view for the mass and
spring model. Select the HtmlView radio button to examine how this
HTML-based view is created.

The right frame of the HtmlView workpanel of EjsS, shown in Fig-
ure 3.7, contains a collection of HTML-based view elements, grouped by



EjsS*Manual November 21, 2014

42 CHAPTER 3

functionality. View elements are building blocks that can be combined to
form a complete user HTML-based interface, and each view element is a
specialized object with an on-screen representation. To display information
about a given element, click on its icon and press the F1 key or right-click
and select the Help menu item. To create a user interface, we create an
empty HTML view (think of it as a blank HTML page) and add elements,
such as panel, buttons and graphs, using “drag and drop” as described in
Section 3.4.

Figure 3.7: The HtmlView workpanel showing the Tree of elements for the mass
and spring user interface.

The Tree of elements shown on the left side of Figure 3.7 displays the
structure of the mass and spring user interface. Notice that the simulation
has three main panels, labelPanel, centerPanel and bottomPanel, that
appear tiled vertically on the HTML page in the Emulator. (The EjsS
Emulator emulates an HTML browser.) These panels belong to the class of
container elements whose primary purpose is to visually group (organize)
other elements within the user interface. The tree displays descriptive names
and icons for these elements. Right-click on an element of the tree to obtain
a menu that helps the user change this structure. Alternatively, you can drag
and drop elements from one container to another to change the parent-child
relationship, or within a container to change the child order. (There are
conditions for a container to accept a given element as child. For instance,
a two-dimensional drawing panel can only accept 2D drawable elements.)

Each view element has a set of internal parameters, called properties,
which configure the element’s appearance and behavior. We can edit these
properties by double clicking on the element in the tree to display a table
known as a properties inspector. Appearance properties, such as color, are
often set to a constant value, such as "Red". We can also use a variable
from the model to set an element’s property. This ability to connect (bind)
a property to a variable without programming is the key to turning our view



EjsS*Manual November 21, 2014

EXPLORING THE JAVASCRIPT FLAVOR OF Easy Java(script) Simulations 43

into a dynamic and interactive visualization.

Let’s see how this procedure works in practice. Double-click on the
massShape element (the ‘Shape’ suffix we added to the element’s name helps
you know the type of the element) in the tree to display the element’s prop-
erties inspector. This element is the mass that is attached at the free end
of the spring. The massShape’s table of properties appears as shown in
Figure 3.8.

Figure 3.8: The table of properties of the massShape element.

Notice the properties that are given constant values. The ShapeType,
SizeX, SizeY, and FillColor properties produce an ellipse of size (0.2,0.2)
units (which makes a circle) filled with the color Magenta. More importantly,
the X and Y properties of the shape are bound to the x and y variables of the
model. This simple assignment establishes a bidirectional connection be-
tween model and view. These variables change as the model evolves and the
shape follows the x and y values. If the user drags the shape to a new loca-
tion, the x and y variables in the model change accordingly. Note, however,
that the Draggable property is set to allow you only to drag horizontally
the mass.

Elements can also have action properties which can be associated with
code. (Action properties have their labels displayed in red.) User actions,
such as dragging or clicking, invoke their corresponding action property, thus
providing a simple way to control the simulation. When the user releases
the mass after dragging it, the following code (specified on the OnRelease

action property) is executed:

vx = 0.0; // sets the velocity to zero

_view.reset(); // clears all plots



EjsS*Manual November 21, 2014

44 CHAPTER 3

Clicking on the icon next to the field displays a small editor that shows this
code.

Because the On Release action code spans more than one line, the property
field in the inspector shows a darker (green) background. Other data types,
such as boolean properties, have different editors. Clicking the second icon
displays a dialog window with a listing of variables and methods that can
be used to set the property value.

Exercise 3.1. Element inspectors
The mass’ inspector displays different types of properties and their possible

values. Explore the properties of other elements of the view. For instance,
the displacementTrail and velocityTrail elements correspond to the
displacement and velocity time plots in the rightmost big plotting panel of
the view, respectively. What is the maximum number of points that can be
added to each trail? 2

3.1.4 The completed simulation

We have seen that Easy Java(script) Simulations is a powerful tool that
lets us express our knowledge of a model at a very high level of abstraction.
When modeling the mass and spring, we first created a table of variables
that describes the model and initialized these variables using a column in the
table. We then used an evolution panel with a high-level editor for systems
of first-order ordinary differential equations to specify how the state ad-
vances in time. We then wrote relations to compute the auxiliary or output
variables that can be expressed using expressions involving state variables.
Finally, the program’s graphical user interface and high-level visualizations
were created by dragging objects from the Elements palette into the Tree of
elements. Element properties were set using a properties editor and some
properties were associated with variables from the model.

It is important to note that the three lines of code on the Fixed re-
lations workpanel (Figure 3.6) and the two lines of code in the particle’s
action method are the only explicit Javascript code needed to implement
the model. Easy Java(script) Simulations creates a complete Javascript
program by processing the information in the workpanels when the run icon
is pressed as described in Section 3.2.

3.2 RUNNING THE SIMULATION

It is time to run the simulation by clicking on the Run icon of the taskbar,
. EjsS generates the Javascript code, collects auxiliary and library files,



EjsS*Manual November 21, 2014

EXPLORING THE JAVASCRIPT FLAVOR OF Easy Java(script) Simulations 45

and generates and opens an HTML page with the complete program. All at
a single mouse click.

Running a simulation initializes its variables and executes the fixed
relations to insure that the model is in a consistent state. The model’s time
evolution starts when the play/pause button in the user interface is pressed.
(The play/pause button displays the icon when the simulation is paused
and when it is running.) In our current example, the program executes a
numerical method to advance the harmonic oscillator differential equation
by 0.05 time units and then executes the fixed relations code. Data are then
passed to the graph and the graph is repainted. This process is repeated 20
times per second.

When running a simulation, EjsS changes its Run triangle icon to a
red Kill square and prints informational messages saying that the simulation
has been successfully generated and that it is running. Notice that the EjsS
Emulator mock-up window disappears and is replaced by a new but similar
Emulator window without the red border in their title. (Alternatively, you
can set EjsS ’ options to run the simulation in your system’s default HTML
browser.) These views respond to user actions. Click and drag the particle to
a desired initial horizontal position and then click on the play/pause button.
The particle oscillates about is equilibrium point and the plot displays the
displacement and velocity data as shown in Figure 3.9. To exit the program,
close the simulation’s main window.

Figure 3.9: The mass and spring simulation displays an interactive drawing of the
model and a graph with displacement and velocity data.



EjsS*Manual November 21, 2014

46 CHAPTER 3

3.3 DISTRIBUTING THE SIMULATION

Simulations created with EjsS are stand-alone Javascript programs that can
be distributed without EjsS for other people to use. The easiest way to do
this is to package the simulation in a single executable zip file by clicking on

the Package icon, . A file browser appears that lets you choose a name
for the self-contained jar package. The default target directory to hold this
package file is the export directory of your workspace, but you can choose
any directory and package name. The stand-alone zip file is ready to be
distributed on a CD or via the Internet. Other distribution mechanisms are
available by right-clicking on the icon.

Exercise 3.2. Distribution of a model
Click on the Package icon on the taskbar to create a stand alone zip archive

of the mass and spring simulation. Copy this zip file into a working di-
rectory separate from your EjsS installation. Close EjsS and verify that
the simulation runs as a stand-alone application by unzipping the file and
double-clicking the MassAndSpring.xhtml file that is extracted from the
zip file. 2

An important pedagogic feature is that is very easy to distribute your
simulation source code so that other people can use it with EjsS at any
time to examine, modify, and adapt the model. (EjsS must, of course, be
installed.) EjsS writes all the information in its workpanels into a small
Extensible Markup Language (XML) description file. And it can also create
a single, compressed ZIP file with that XML information and all the resource
files (such as images) that you used in your simulation. This ZIP file can
then be distributed, and trying to open it with EjsS will extract the required
files from the ZIP, copy the files into a folder of your workspace, and load
EjsS with this simulation. If a model with the same name already exits,
it can be replaced. The user can then inspect, run, and modify the model
just as we are doing in this chapter. A student can, for example, obtain
an example or a template from an instructor and can later repackage the
modified model sources into a new ZIP file for submission as a completed
exercise.

Exercise 3.3. Packaging and extracting a model source files
Right click the Package icon and select ZIP the simulation source files from

the menu that appears. Reopen the created ZIP file with EjsS and select a
destination folder (different from JavascriptExamples) in your workspace
for EjsS to unzip the sources. Notice that EjsS copies all the files in the
original example for you and opens the new MassAndSpring.ejss XML
file. 2



EjsS*Manual November 21, 2014

EXPLORING THE JAVASCRIPT FLAVOR OF Easy Java(script) Simulations 47

EjsS is designed to be both a modeling and an authoring tool, and
we suggest that you now experiment with it to learn how you can create
and distribute your own models. As a start, we recommend that you run
the mass and spring simulation and go through the activities in the second
page of the Description workpanel. We modify this simulation in the next
section.

3.4 MODIFYING THE SIMULATION

As we have seen, a prominent and distinctive feature of Easy Java(script)
Simulations is that it allows us to create and study a simulation at a high
level of abstraction. We inspected an existing mass and spring model and
its user interface in the previous section. We now illustrate additional ca-
pabilities of Easy Java(script) Simulations by adding friction and a driving
force and by adding a visualization of the system’s phase space.

3.4.1 Extending the model

We can add damping in our model by introducing a viscous (Stoke’s law)
force that is proportional to the negative of the velocity Ff = −b vx where
b is the damping coefficient. We also add an external time-dependent driv-
ing force which takes the form of a sinusoidal function Fe(t) = A sin(ω t).
The introduction of these two forces changes the second-order differential
equation (3.1.1) to

d2 x

dt2
= − k

m
(x− L) − b

m

d x

dt
+

1

m
Fe(t), (3.4.1)

or, as in equations (3.1.2) and (3.1.3):

d x

dt
= vx, (3.4.2)

d vx
dt

=− k

m
(x− L) − b

m
vx +

1

m
Fe(t). (3.4.3)

3.4.1.1 Adding variables

The introduction of new force terms requires that we add variables for the
coefficient of dynamic friction and for the amplitude and frequency of the
sinusoidal driving force. Return to the Model workpanel of EjsS and select
its Variables panel. Right-click on the tab of the existing page of variables
to see its popup menu, as in Figure 3.10. Select the Add a new page entry as



EjsS*Manual November 21, 2014

48 CHAPTER 3

shown in Figure 3.10. Enter Damping and Driving Vars for the new table
name in the dialog and an empty table will appear.

Figure 3.10: The popup menu for a page of variables.

We now use the new table to declare the needed variables. We could
have used the already existing tables, but declaring multiple pages helps us
organize the variables by category. Double-click on a table cell to make it
editable and navigate through the table using the arrows or tab keys. Type
b in the Name cell of the first row, and enter the value 0.1 in the Initial
value cell to its right. We don’t need to do anything else because the double
type selected is already correct. EjsS checks the syntax of the value entered
and evaluates it. If we enter a wrong value, the background of the value
cell will display a pink background. Notice that when you fill in a variable
name, a new row appears automatically. Proceed similarly to declare a new
variable for the driving force’s amp with value 0.2 and for its freq with value
2.0. Document the meaning of these variables by typing a short comment
for each at the bottom of the table. Our final table of variables is shown
in Figure 3.11. You can ignore the empty row at the end of the table or
remove it by right-clicking on that row and selecting Delete from the popup
menu that appears.

Figure 3.11: The new table of variables for the damping and forcing terms.

3.4.1.2 Modifying the evolution

We now modify the differential equations on the evolution page by adding
expressions for the new terms in equation (3.4.3). Go to the evolution panel,
double-click on the Rate cell of the second equation, and edit it to read:



EjsS*Manual November 21, 2014

EXPLORING THE JAVASCRIPT FLAVOR OF Easy Java(script) Simulations 49

-k/m * (x-L) - b*vx/m + force(t)/m

Notice that we are using a method (function) named force that has not yet
been defined. We could have written an explicit expression for the sinusoidal
function. However, defining a force method promotes cleaner and more
readable code and allows us to introduce custom methods.

3.4.1.3 Adding custom code

The force method is defined using the Custom panel of the Model. Go
to this panel and click on the empty central area to create a new page of
custom code. Name this page force. You will notice that the page is created
with a code template that defines the method. Edit this code to read:

function force (time) {

return amp*Math.sin(freq*time); // sinusoidal driving force

}

Type this code exactly as shown including capitalization. Compilers com-
plain if there is any syntax error.

Notice that we pass the time at which we want to compute the driving
force to the force method as an input parameter. Passing the time value
is very important. It would be incorrect to ask the method to use the value
of the variable t, as in:

function force () { // incorrect implementation of the force method

return amp*Math.sin(freq*t);

}

The reason that time must be passed to the method is that time changes
throughout the evolution step. In order for the ODE solver to correctly
compute the time-dependent force throughout the evolution step, the time
must be passed into the method that computes the rate.

Variables that change (evolve) must be passed to methods that are used
to compute the rate because numerical solvers evaluate the Rate column in
the ODE workpanel at intermediate values between t and t + dt. In other
words, the independent variable and any other dynamic variable which is
differentiated in the State column of the ODE editor must be passed to
any method that is called in the Rate column. Variables which remain



EjsS*Manual November 21, 2014

50 CHAPTER 3

constant during an evolution step may be used without being passed as
input parameters because the value of the variable at the beginning of the
evolution step can be used.

3.4.2 Improving the view

We now add a visualization of the phase space (displacement versus velocity)
of the system’s evolution to the HtmlView. We also add new input fields
to display and modify the value of the damping, amplitude, and frequency
parameters.

Go to the HtmlView workpanel and notice that the Interface palette
contains many subpanels. Click on the tab with the icon to display the
Windows, containers, and drawing panels palette of view elements. Click

on the icon for a plotting panel, , in this palette. You can rest (hover)
the mouse cursor over an icon to display a hint that describes the element if
you have difficulty recognizing the icon. Selecting an element sets a colored
border around its icon on the palette and changes the cursor to a magic
wand, . These changes indicate that EjsS is ready to create an element of
the selected type. (Return to the design mode –get rid of the magic wand–
by clicking on any blank area within the Tree of elements or hitting the Esc
key.)

Click on the Simulation view tree node in the Tree of elements as
shown in Figure 3.12 to add the plotting panel to the view.

Figure 3.12: Creation of a plotting panel as a new (and last) child of the simulation
view.

EjsS asks for the name of the new element and then creates the element
as a new child of the simulation view (in the last position). A new plot
appears but the Emulator window is too small. Resize the Emulator window



EjsS*Manual November 21, 2014

EXPLORING THE JAVASCRIPT FLAVOR OF Easy Java(script) Simulations 51

by editing the Width and Height fields at its top. This window size is useful
to orient you about how the final simulation will look in devices with fixed
screen resolution (such as tablets). Finally, edit the properties table of the
newly created plotting panel element to set the Title property to Phase

Space, the TitleX property to Displacement, and the TitleY property to
Velocity. (EjsS will add leading and trailing quotes to these strings to
conform to the correct Javascript syntax.) Set the minima and maxima for
both X and Y scales to -1 and 1, respectively, and leave the other properties
untouched.

The plotting panel is, as its name suggests, the container for the phase-
space plot. Phase space data are drawn in this panel using a 2D element of
type Trail, . Find the Trail2D element in the 2D Drawables palette and
follow the same procedure as before. Select the Trail element and create
an element of this type by clicking with the magic wand on the new phase
space plotting panel. Finally, edit the properties of the new trail element
to set its InputX property to x - L and its InputY property to vx. This
assignment causes the simulation to add a new (x - L,vx) point to the
trace after each evolution step, thus drawing the phase-space plot shown in
Figure 3.13.

Figure 3.13: The new phase-space plot added to the simulation view.

To finish the modifications, we will add a new panel before the new
plotting frame that shows the sinusoidal driving force parameters.

• Select the Panel element icon, , on the Windows, containers, and
drawing panels subgroup of the Interface palette. Click with the magic
wand on the Simulation view root node within the Tree of elements
to create a new panel named forceParamPanel as its last child. Right-
click and use the Move up option to locate it before the phase space
plotting panel. (You can also drag-and-drop it to the new position in
the tree.)

• Select the Label element icon, , on the Buttons and decorations
subgroup of the Interface palette and create a new element of that
type in the forceParamPanel panel. Set the label’s text property to



EjsS*Manual November 21, 2014

52 CHAPTER 3

"frequency =".
• Select the Field element icon, , and create a new element named
freqField in the force parameter panel. Edit the freqField properties
table as shown in Figure 3.14. The connection to the freq variable is
established using the Value property. Click on the second icon to the
right of the property field, , and choose the appropriate variable. The
variable list shows all the model variables that can be used to set the
property field. The Format property indicates the number of decimal
digits with which to display the value of the variable.

• Repeat this process to add the amp variable to the user interface.

Figure 3.14: The table of properties of the freqField element.

3.4.3 Changing the description

Now that we have changed the model and the view, we should modify the
description pages of our simulation. Go to the Description workpanel and
click on the tab of the first page, the one labeled Introduction. Once you
see this page, click the Click to modify the page icon, . The description
page will change to edit mode, as shown in Figure 3.15, and a simple editor
will appear that provides direct access to common HTML features.

If you prefer to use your own editor, you can copy and paste HTML
fragments from your editor into the EjsS editor. If you know HTML syntax,
you can enter tagged (markup) text directly by clicking the source icon, ,
in the tool bar. You can even import entire HTML pages into EjsS by
clicking the Link/Unlink page to external file icons, , .

Edit the description pages as you find convenient. At least change the
discussion of the model to include the damping and driving forces. When
you are done, save the new simulation with a different name by clicking the
Save as icon of EjsS ’ taskbar, . When prompted, enter a new name for
your simulation’s XML file. The modified simulation is stored in the Mas-
sAndSpringComplete.ejss file in the source directory for this chapter.



EjsS*Manual November 21, 2014

EXPLORING THE JAVASCRIPT FLAVOR OF Easy Java(script) Simulations 53

Figure 3.15: The HTML editor of EjsS. The added red arrows point to the edit
and source code edition mode icons.

3.5 PROBLEMS AND PROJECTS

Problem 3.1 (Energy). Add a third plotting panel to the dialog window
of the MassAndSpringComplete.ejss simulation that will display the
evolution of the kinetic, potential, and total energies.

Problem 3.2 (Function plotter). The analytic solution for the undriven
simple harmonic oscillator is

x(t) = A sin(w0t+ φ) (3.5.1)

where A is the amplitude (maximum displacement), w0 =
√
k/m is the

natural frequency of oscillation, and φ is the phase angle. Consult a me-
chanics textbook to determine the relationship between the amplitude and
phase angle and the initial displacement and velocity. Use the Function-
Plotter.ejss simulation in the examples directory to compare the analytic
solution to the numerical solution generated by the MassAndSpringCom-
plete.ejss model.

Project 3.1 (Two-dimensional oscillator). Modify the model of the mass and
spring simulation to consider motion that is not restricted to the horizontal
direction. Assume that a second spring with spring constant k′ produces a
vertical restoring force Fy(δy) = −k′ δy. Modify the simulation to allow the
user to specify the Hooke’s law constants as well as the initial conditions in
both directions. Describe the motion produced without a driving force but
under different initial conditions and with different spring constants. (Try
k = 1 and k′ = 9.) Show that it is possible to obtain circular motion if
k = k′.

Project 3.2 (Simple pendulum). Create a similar simulation as the one de-
scribed in this chapter for a simple pendulum whose second-order differential



EjsS*Manual November 21, 2014

54 CHAPTER 3

equation of motion is
d2θ

dt2
= − g

L
sin(θ), (3.5.2)

where θ is the angle of the pendulum with the vertical, g is the acceleration
due to gravity, and L is the arms’s length. Use fixed relations to compute
the x and y position of the pendulum bob using the equations:

x = L sin(θ)

y = −L cos(θ).



EjsS*Manual November 21, 2014

Bibliography


	EjsS Manual.pdf

